Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 23(8): 297, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376608

RESUMEN

We propose encapsulating phenylalanine ammonia lyase (PAL)-bovine serum albumin (BSA) mixtures as potential oral therapy for the management of phenylketonuria. PAL will metabolize phenylalanine in the gastrointestinal tract while BSA will minimize product inhibition and allow PAL to work at its Vmax. We intend manufacturing microcapsules using spray drying and the proteins will be exposed to heat. In the current pre-formulation studies, we determined the effect of elevated temperatures on the structure and activity of PAL-BSA mixtures and evaluated the stabilizing potential of excipients. Exposure of PAL to 75°C decreased its Vmax. BSA exacerbated the elevated temperature-mediated decrease in PAL Vmax and completely lost the ability to protect PAL from trans cinnamic acid (TCA)-mediated product inhibition. Circular dichroism studies revealed that elevated temperatures did not affect the secondary structure of PAL but decreased BSA α-helicity. Binding experiments showed that elevated temperature-mediated loss in BSA α-helicity was associated with markedly decreased binding and sequestration of TCA, which accounts for the inability of BSA to relieve PAL product inhibition. Sucrose, trehalose, and low concentrations of sodium dodecyl sulfate conferred concentration dependent stabilization of BSA secondary structure against thermal denaturation. The sugars enhanced PAL Vmax, markedly improved TCA binding to BSA, and restored the ability of BSA to relieve PAL product inhibition. PAL-BSA mixtures exposed to elevated temperatures in the presence of sucrose and trehalose exhibited high and constant PAL activity. The results justify inclusion of these sugars in the eventual microcapsule manufacturing process.


Asunto(s)
Fenilanina Amoníaco-Liasa , Tensoactivos , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Albúmina Sérica Bovina/química , Excipientes , Temperatura , Trehalosa , Azúcares , Cápsulas , Sacarosa
2.
J Pharm Sci ; 111(7): 1857-1867, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351497

RESUMEN

Phenylalanine ammonia lyase (PAL) metabolizes phenylalanine to transcinnamic acid (TCA). Our eventual goal is to develop a PAL microcapsule formulation to deplete phenylalanine in the gastrointestinal tract (g.i.t). The focus of this research is pre-formulation studies with PAL. PAL exhibited undesirable time dependent decrease in activity due to TCA mediated product inhibition. Addition of bovine serum albumin (BSA) completely relieved product inhibition. Ultrafiltration experiments revealed that BSA acted by binding and sequestering TCA. PAL exhibits maximum activity at a pH of 8.5 and will need to be buffered to retain activity in the g.i.t. Buffer studies showed that a pH 8.5, 0.4 M Bicine buffer containing BSA was able to maintain maximal PAL activity against simulated gastric and intestinal fluid additions. Buffered PAL with BSA was able to rapidly and completely deplete phenylalanine in simulated mouse g.i.t conditions. A small fraction of phenylalanine in the g.i.t is present as dipeptides. Our studies established for the first time that PAL cannot metabolize phenylalanine dipeptides. Our results explain why previous trials with PAL in the management of phenylketonuria produced low efficacy. They will guide design of a PAL microcapsule formulation that maintains maximal PAL activity during its transit through the g.i.t.


Asunto(s)
Fenilanina Amoníaco-Liasa , Fenilcetonurias , Animales , Cápsulas , Dipéptidos , Ratones , Fenilalanina/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilcetonurias/tratamiento farmacológico , Albúmina Sérica Bovina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...